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Department of Physics, Indian Institute of Technology, Kanpur 208016, India 

Received 5 September 1989 

Abstract. We consider rotating Rayleigh-Benard convection with modulated rotation speed. 
Galerkin truncation under realistic, i.e. experimentally realisable, boundary conditions is 
carried out. The threshold of convection can be raised or lowered depending on the Prandtl 
number and rotation speed. 

The effect of modulation of the control parameter on the onset of hydrodynamic 
instability has been a subject of continuing interest. Recently, the effect of temperature 
modulation on the Rayleigh-Benard instability and the effect of modulation of the 
rotation speed in the Taylor-Couette instability has been probed extensively both 
theoretically and experimentally (Ahlers et a1 1985, Meyer et a1 1988, Niemela and 
Donnelly 1986, Kumar et a1 1986, Walsh and Donnelly 1988). For Rayleigh-Benard 
convection the temperature modulation is supposed to stabilise the conduction state. 
Complications set in, however, since the temperature modulation breaks the reflection 
symmetry about the mid-plane and hexagons, rather than cylinders, constitute the 
convection plan-form immediately above the threshold. For the Rayleigh-Benard 
problem with rotation, the above problem can be avoided if the rotation speed is 
modulated. This leads to a cleaner problem for the study of the effect of modulation 
on the threshold. For high rotation rates, specifically rates higher than the critical 
values for the onset of the Kiippers-Lortz ( K L )  instability (Kiippers and Lortz 1969), 
the unmodulated state makes a direct transition to a weakly turbulent state and hence 
the study of modulation effects become subtle from the theoretical standpoint. 

In this letter, we set up a Galerkin truncation of the hydrodynamic equations to 
study the effect of modulation on the convection threshold. We find that: 

( i )  for low Prandtl numbers, the conduction state is stabilised for all rotation rates 
below the onset of K L  instability; 

(ii) for high Prandtl numbers, the conduction state can be stabilised or destabilised 
depending upon the rotation rate, which is still below the onset of K L  instability; 

(iii) for rotation rates above the threshold for K L  instability, the Galerkin model 
has to be supplemented by additional information about the instability, and in this 
regime the effect of the modulation is to destabilise the conduction state. 

The hydrodynamic equations for the problem are the Navier-Stokes equation with 
the Coriolis and centrifugal forces included and the heat conduction equation which 
can be written as (Chandrasekhar 1961) 

c+ ( U . v ) T = A v2 T 
at  

0305-4470/89/241135+05$02.50 @ 1989 IOP Publishing Ltd L1135 



L1136 Letter to the Editor 

with 

f2( t )  = a,( 1 + E cos ut). (2) 

The fluid is contained between two infinite parallel plates a distance d apart in the z 
direction. The boundary condition on Y is the realistic one of no slip. This means 
that all components of Y vanish at the boundaries, as does the z component of the 
vorticity. We work within the Boussinesq approximation. 

The Galerkin truncation modes (Bhattacharjee and McKane 1988) for W (the z 
component of the velocity), 5 (the z component of the vorticity) and 0 (temperature 
deviation from the conduction state profile) are taken as 

( 3 a )  

(3b )  

(3c) 

Using X ,  G, Y and Z to denote the appropriately scaled forms of a, b, c and d, we 
are led to the dynamical system 

x = + x +  Y +  ~ G ) + ~ ~ ~ c o s ( ~ ~ ) G  (4) 

fi G = - 4 4 2  + a 2 ) G  - F ~ X  - FE i COS(WT)X ( 5 )  

f 2 Y = - X Z + r X -  Y (6) 

2 = X Y  - bZ ( 7 )  

W(X, Z, t )  = a(r)(cos ax)(z2-4)' 

5(x, Z, t )  = b(r)(cos ax)z(z2-i)  

0(x, Z, t )  = c(r)(cos ax) (z2- f )+d(r ) (z2-~) ' .  

where 

189 Ra' 
196 a2+10 

r = - -  (a4+24a2+ 504)-' 

f l =  ( a4 - 24a2 + 504)/( 12 + a 2 )  f 2  =f1/(10+ a')  

T Z =  12(a4+24a2+504)-'? 

b = 12/& 

? = 4C12d4/ v2 

and time scaling is done by the factor ud2/vf,. 
We have checked that the linear stability analysis of the conduction state X = G = 

Y = Z = 0 leads to threshold Rayleigh-Benard numbers and critical wavenumbers in 
excellent agreement with the exact answers. Further, if instead of thermally conducting 
boundaries, thermally insulating boundaries are used, appropriate changes in the 
z-dependent functions for @(x, z, t )  in (3c)  lead to excellent answers for the convection 
threshold once again. Hence, we consider the Galerkin truncation of (4)-(7) as highly 
accurate and use it to study the effect of modulation. 

For the linear stability analysis of the conduction state X = Y = G = 0, we need 
the linearised system 

X = U ( - X  + Y + ?G) + FE?COS(UT)G 

f l G =  - u ( ~ ~ + ~ ~ ) G - F ~ X - F E ~ ~ O S ( W T ) X  (86) 

fi Y = - Y + rx. 

(8a) 

(8c) 
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In the absence of the modulation, E =0, the onset of stationary convection occurs at 

r = ro = 1 + T2/(42 + a’) 

or 

( a 4 + 2 4 a 2 + 5 0 4 ) + 7  7 
a a +42 

R = - (  196 (a’+10) 
189 a 2  

The threshold R is found from the above by minimising with respect to a. The critical 
a which is thus obtained will be used in (4147) henceforth. To find the shifted 
threshold we expand 

r = r, = ro + Erl  + E r2 + . . . (9a) 

(96) 

and similarly for Y and G. One should note that in the expansion for X, G and Y, 
the zeroth-order terms are time independent for stationary convection, while X, , 
X 2 ,  . . . , etc, are the responses at the basic frequency of the modulation and the higher 
harmonics. Casting (8a)-(8c) in the form 

x = xo+ &XI + &2X2+. . . 

(10) 

where 

- ro 0 f2a/ar + 1 

introducing the expansions of (9a) and ( 9 b )  in  (10) and equating like powers of E, 

we obtain 

L(;)=o (12a) 

(12c) 

We now apply the solvability criterion or the Fredholm alternative on (12b) and (12c), 
where the operator L is characterised by (11). Straightforward calculation leads to 

rl = O  (13 )  
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D = w’[  f, +fIf2U+ f2u(42 - a 2 ) y +  ( f2u2 + u)(42 + a’) + u’i2-.2 

Typical results are shown in figure 1 .  It is seen that for low U, the conduction state 
is stabilised for all values of Taylor number. For U >> 1,  however, the effect is one of 
stabilisation if the rotation speed is low, but is one of destabilisation if the rotation 
speed is high. Interestingly enough, it should be remembered that for the modulated 
Rayleigh-Benard problem the conduction state is always stabilised (Venezian 1969, 
Ahlers et a1 1985, Kumar et a1 1986), while for the modulated Taylor-Couette problem 
the pure rotational flow is destabilised (Hall 1975, Bhattacharjee et a1 1986). Experi- 
mental results for the rotating Rayleigh-Benard problem with modulated rotation 
speed should be available shortly (Niemela et a1 1989). 

I i - w o o ,  0.5 \ 
I / I  I 
0 1 2 Y o  

a 
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Figure 1. The shift Ar in the threshold Rayleigh number on modulation normalised by the 
unmodulated threshold r, and E ~ ,  where E is the amplitude of modulation, plotted against 
the frequency w of modulation. f is the Taylor number and D the Prandtl number. Curves 
are based on (14)-( 16). It should be noted that for very low frequencies the K L  instability 
is to be taken into account and that would always cause a destabilisation at the zero- 
frequency end. 

Finally we address the question of the K L  instability. If the rotation speed is greater 
than the critical value for the onset of K L  instability, then at the onset of convection 
the straight roll system is unstable to a perturbation by a roll system at an angle of 
approximately 60”. The pattern will consequently be a switching back and forth between 
three roll systems (Niemella and Donnelly 1987) at 60” to each other (Busse and Heike 
1980) and the characteristic timescale for the switching 7, is quite long. If the modula- 
tion frequency is high (i.e. UT, >> l ) ,  then the results found above are clearly unaffected. 
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However, for W T , ~  1, i.e. for low-frequency modulations, the effect of the switching 
between different roll systems will be on the same timescale as the modulation, and 
the modulation will affect the onset of convection. To be more accurate, the convection 
state produced when the conduction state is destabilised above the K L  instability is 
actually weakly turbulent and the time dependence is characterised by a distribution 
of frequencies in the low-frequency end. For UT,< 1, the modulation frequency lies 
in this range and a parametric resonance occurs resulting in a lowering of the convection 
threshold (Bloodworth et a1 1987). 
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